An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Clostridium Difficile Toxin Gene Regulation

Objective

Clostridium difficile is the principal causative agent of antibiotic-associated colitis and the only known cause of pseudomembranous colitis, a potentially lethal disease. Two large toxin proteins, encoded by the toxA and toxB genes, which lie within a 19 kb pathogenicity islet, are the primary virulence factors.<P> Previous work from the applicants' laboratories has shown that transcription of the tox genes depends entirely on TxeR, a novel RNA polymerase sigma factor encoded within the same pathogenicity locus. The level of expression is strongly modulated, however, by the growth state of the cells and by environmental conditions. For instance, for cells growing in broth medium, tox gene transcription is restricted to stationary phase cells and is repressed by rapidly metabolizable carbon sources, such as glucose. Other factors that influence toxin synthesis are the availability of biotin and certain amino acids and the temperature of cultivation. <P> The present proposal seeks to determine the molecular mechanisms that control toxin synthesis in response to environmental signals. Candidate regulatory proteins, based on comparative genomics, will be specifically tested for their participation in such regulation. These proteins include CodY, CcpA and VirR, whose homologs in Bacillus subtilis or Clostridium perfringens have been shown to mediate the types of regulatory effects in question. <P> In addition, general, unbiased searches for the relevant regulatory proteins will be carried out based on affinity chromatography. A fourth protein, TcdC, will be tested for its potential activity as an antagonist of TxeR.<P> The project makes use of the expertise in C. difficile biochemistry, genetics and physiology of the three collaborating research groups and recent advances made by each of the groups in making this experimental system amenable to detailed molecular genetic analysis.

Investigators
Sonenshein, Abraham
Institution
Tufts University
Start date
2004
End date
2009
Project number
1R01AI057637-01A1