An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Design of metal-oxide nanoparticle reinforced nano-fibrous biopolymer composites for water treatment

Objective

The overall objective of this project is to fabricate multifunctional, biopolymer-metal oxide nanoparticle, reinforced composites for fluoride and pathogen removal in groundwater. Previously reported materials have low fluoride adsorption capacity, and there is no information on their capacity for disinfection of the treated water. The biopolymer composite that the PI and his team plan to develop is envisaged to have high fluoride adsorption capacity and at the same time remove pathogens, resulting in a powerful treatment system to deliver safe, fluoride-free drinking water. These electrospun chitosan-cellulose hybrid nanocomposites will provide active sites for reduction and introduction of Ag-MgO engineered nanomaterials that will be instrumental in imparting pathogen removal capacity. A component of this project is the formation and loading of various metal oxide nanoparticles on the biopolymer composites, testing their effectiveness in simultaneous defluoridation of the groundwater and pathogen removal. The U.S. partner on the project, Dr. James Smith, will contribute his expertise in nanomaterial synthesis, as well as his experience in pioneering the application of silver-coated ceramic water filters and ceramic tablets loaded with silver nanoparticles for water treatment in a rural community in South Africa.

Investigators
James Smith
Institution
University of Nevada
Start date
2018
End date
2020
Project number
6-448