An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Developing Predictive Models for Identifying Pigs with Decreased Salmonella Shedding Based on Innate Inflammatory Response in Blood

Objective

<OL> <LI> Profile the in vivo whole blood RNA and cytokine response to Salmonella Typhimurium infection in animals with high and low fecal shedding phenotypes. <LI> Using the same animals in Aim 1, profile the in vitro whole blood RNA and cytokine response to lipopolysaccaride or Salmonella Typhimurium treatments prior to in vivo exposure to Salmonella Typhimurium of the pigs. <LI>Annotate response profiles for common expression patterns and functional themes and develop regulatory network information on response to inflammatory stimuli. <LI> Develop and test predictive models for identifying pigs with decreased fecal shedding post-infection.

More information

Approach: The assembled team has expertise and recent experience in collecting and analyzing porcine transcriptional profiling data, as well as in developing computational regulatory networks. We will propose to integrate and extend these datasets to specifically build a database containing transcriptional and regulatory factor-chromatin binding data of the inflammatory response to pathogen challenge. We will use the most comprehensive approaches possible, including the Affymetrix Porcine GeneChip' and/or pig long oligo arrays for RNA work, and chromatin immunoprecipitation methods for selected transcription factors to develop regulatory network data. These data will then be analyzed using several computational approaches to find genes and develop an understanding of regulatory networks responsible for differences in outcome after infection, and this new information will be applied to find predictors for not only which swine are more resistant to Salmonella infection and shedding but also optimal health traits. We believe this approach will be successful in both establishing molecular measures of health and disease, predicting Salmonella resistant versus susceptible pigs, and identifying the most promising targets for improving animal health and growth in challenging environments.

Investigators
Bearson, Shawn
Institution
USDA - Agricultural Research Service
Start date
2009
End date
2012
Project number
3625-32000-101-01
Accession number
415003
Categories