An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

DEVELOPING PROCESSING INTERVENTION TECHNOLOGIES

Objective

The overall goal of this research is to reduce the risk of foodborne illness associated with the consumption of produce and shell eggs. Effective postharvest intervention technologies for these foods have proven difficult to implement and, therefore, are on the FDA Center for Food Safety and Applied Nutrition's list of highest research priorities. This new project was formed to apply proven engineering expertise to the development of efficient intervention strategies for challenging foods such as shell eggs, fresh produce and frozen produce. While other projects continue looking at intervention methods such as hot water immersion, irradiation and cold plasma for these types of foods, the proposed project will research novel technologies including microwave, radio frequency, UV, and flash steam. The specific objectives of the research program are as follows: 1: Develop, evaluate, and validate through laboratory and pilot-plant processing the effect of single and combinations of intervention technologies on pathogen reduction in eggs. Specifically, conduct research to "pasteurize" shell eggs using technologies, such as microwave heating or ozone-based combination treatments. 2: Develop, evaluate, and validate through laboratory and pilot-plant processing the effect of single and combinations of intervention technologies on pathogen reduction in fresh produce. For example, engineer flash steam and UV treatments and develop antimicrobial/antioxidant compounds of GRAS origin as a processing aid for fruits and vegetables. 2A: Develop and evaluate a hurdle approach to inactivate Salmonella spp. and E. coli O157:H7 from tomato stem scar tissue. Application of thermal energy to the stem scar region of the tomato will be employed for the destruction of pathogens and to expose bacteria to subsequent treatments including antimicrobial immersion. 2B: Develop and evaluate a novel approach to inactivate Salmonella and E. coli O157:H7 on berries by an antimicrobial water agitation treatment. Aerated turbulence and vacuum will be applied to berries in order to remove particulate matter and expose niches within the host tissue to antimicrobials. 2C: Develop and evaluate a hurdle approach to inactivate Salmonella spp., L. monocytogenes and E. coli O157:H7 on fresh fruits and vegetables using individual treatments or a combination of antimicrobials and flash steam. 3: Develop, evaluate, and validate through laboratory and pilot-plant processing the effect of single and combinations of intervention technologies on pathogen reduction for frozen fruits and vegetables. Currently some vegetables are processed through snap freezing. It might be possible to develop a steam pasteurization processing technology that would allow vegetables to be stored refrigerated instead of frozen while having a stable shelf life.

Investigators
Geveke, David
Institution
USDA - Agricultural Research Service
Start date
2011
End date
2016
Project number
8072-41420-017-00D
Accession number
421010
Commodities