Objective 1. Develop push-pull strategies for managing stable flies in agricultural systems. Sub-objective 1A. Identify stimuli that influence fly orientation and distribution. Sub-objective 1B. Develop a push-pull strategy utilizing identified attractants and repellents as components to manage flies. <P> Objective 2. Refine the application of larval control of stable flies by studying maggot distribution, manipulation of larval habitat, and geographic extent of control required. Sub-objective 2A. Examine the causes for clumped distribution of maggots within a breeding site. Sub-objective 2B. Examine modification of soil microflora to reduce larval stable fly populations in concentrated breeding habitats. Sub-objective 2C. Determine effective radius of larval control required to see reduction below economic threshold on an individual property. <P>The purpose of this project is to develop tools for reducing the impact of stable flies on livestock production. Three entomologists are assigned to this project, each supported by a full time research technician and one or two part time students. These scientists are members of the Agroecosystem Management Research Unit (AMRU). The AMRU is a diverse research unit with soil scientists, agronomist, agricultural engineer, and microbiologists completing the staff. The scientists assigned to this project interact with co-workers having expertise in spatial statistics, soil chemistry and physics, soil microbial ecology, and chemical synthesis and formulation to accomplish the mission of the unit.
Approach:
Methodologies to achieve the objectives: 1) Examine the morphology and structure of sensory organs of stable fly adults and larvae. 2) Electrophysiological techniques will be used to identify attractant constituents associated with host animals (breath and skin emissions, etc.) and oviposition substrates (livestock animal manures and decomposing organic matter such as silage, rotting hay, and grass/alfalfa clippings) 3) Identify and evaluate novel repellents on stable fly populations. 4) Use visual and landscape features to develop a spatiotemporal model of stable fly dispersion that will describe and predict habitat use and suitability for larvae and adults. 5) Develop formulations of identified attractants and repellants for field application. 6) Reduce stable fly populations in confined and pastured cattle with Push-Pull strategy. 7) Take a holistic approach to reduce the development of immature stable flies by examining the biological, chemical, and physical characteristics of larval developmental sites and develop tools to modify these sites to render them unsuitable for stable fly development. Though this research will be directed at a better understanding of the stable fly habitat, other filth flies developing in similar habitats will be examined. 8) The limits of chemical and physical properties on survival of both stable flies and house flies will be studied in the laboratory. 9) Patterns of stable fly and house fly larval dispersal in relation to physical and chemical factors will be studied in the laboratory. 9) Mark release recapture studies will be performed in the field to study stable fly larval dispersal. 10) Antibiotics and food preservatives will be tested in the in the laboratory and then the field to determine their effect on stable fly survival. 11) Self marking technique will be usedat stable fly larval development sites to study the dispersal distances from these sites.