An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Harnessing inflammasome activation to enhance efficacy of Salmonella vaccines

Objective

The long-term goal of this project is to develop a panel of live-attenuated Salmonella enterica serovar Typhimurium (Stm) strains that trigger enhanced inflammasome activation, and determine whether their ability to induce inflammasome activation leads to more robust cellular and humoral protective immune responses in animal models of Salmonella infection. These exploratory studies will provide a foundation for future studies that will mechanistic dissect how manipulating inflammasome activation can be used to enhance effectiveness of immunization. Current vaccines against Salmonella provide at most 60% protection, are not effective in very young children, and do not confer long-lasting immunity. inflammasome activation in response to pathogens induces Inflammatory Cell Death and production of inflammasome-dependent cytokines of the IL-1 family. The central hypothesis of this proposal is that induction of inflammasome dependent innate and adaptive immune responses contributes to generation of subsequent protective cellular and humoral immune responses. Critically, many pathogens, including Salmonella, modulate inflammasome activation as a central immune evasion strategy. Thus, live-attenuated Salmonella vaccines retain the ability to limit inflammasome activation despite having reduced Growth within the host. In a recent genetic screen we identified 16 Salmonella genes that limit inflammasome activation, and demonstrated that deletion of these genes results in elevated inflammasome activation in vitro and in vivo. Using the genes identified in this screen, Aim 1 of this project will first generate a panel of 16 novel live-attenuated strains on the aroA background and test their ability to induce enhanced inflammasome activation in vitro and in vivo. These inflammasome activating strains will be tested in vivo to ensure that they do not induce excessive immunopathology. Aim 2 of this project will test whether enhanced inflammasome activation during immunization with Salmonella results in qualitatively or quantitatively better T cell and B cell responses compared with immunization with parental aroA bacteria. These studies will provide novel insight into a critical aspect of Salmonella-host interactions, and are likely to provide novel therapeutic targets.

Investigators
Brodsky, Igor E
Institution
University of Pennsylvania
Start date
2015
End date
2016
Project number
5R21AI117365-02