An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

MICROBIAL COMMUNITIES AND INTERACTIONS AND THEIR IMPACT ON FOOD SAFETY

Objective

1: Determine the mechanisms of biofilm formation in foodborne pathogens and elucidate the role of biofilms in persistence of pathogens in food environments. 1.1 Assemble and screen a collection of Shiga toxin-containing Escherichia coli (STEC) for biofilm forming properties. 1.2 Molecular characterization of biofilm formation in non-O157 STEC. 1.3 Identification of novel factors necessary for biofilm formation in non- O157 STEC. 1.4 Mixed biofilm formation between STEC and isolates from food processing environments. 2: Examine the role of quorum sensing of microorganisms in food environments, with specific emphasis on quorum sensing in mixed biofilm formation and the role of autoinducers such as AHL in survival. 2.1 Examine the role of quorum sensing in biofilm formation by non-O157 STEC. 3: Examine the persistence and transmission of antimicrobial resistant bacteria in microbial ecosystems, with specific emphasis on mobilizable plasmids carrying antibiotic resistance genes. Specifically, conduct sequence analyses and determine phylogenetic relationships among mobilizable plasmids carrying genes encoding antibiotic resistance and investigate gene transfer in biofilms. 3.1 Examine the prevalence and persistence of the KanR ColE1-like plasmids in Salmonella serovars isolated from sick animals and their environment¿ a longitudinal study. 3.2 Investigate plasmid transmission and persistence in biofilms using the KanR ColE1-like mobilizable plasmids as model systems. 4: Qualitatively and quantitatively characterize microbial communities associated with food and food processing environments and examine the role of predominant species in pathogen persistence in mixed culture biofilms. 4.1 Develop a DNA-based most probable composition protocol for estimating the total number, as well as the type, of organisms in an environmental sample or biofilm. 4.2 Determine relative concentrations of various foodborne organisms. Sampling from select food or processing locales, culturable isolate plating & selection, PCR amplification, gene cloning, plating and selection.

Investigators
Paoli, George
Institution
USDA - Agricultural Research Service
Start date
2011
End date
2016
Project number
8072-42000-067-00D
Accession number
420978