An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Microbial Ecology of Human Pathogens Relative to Poultry Processing

Objective

<p>1. Using population genetics, track bacterial migration and adaptation of foodborne pathogens through poultry processing and the associated environment. Evaluate the variations and influence of genetic and strain diversity from animal through the processing plant.</p>
<p>2. Examine the role of protozoa and other potential biological populations in the microbial ecology of foodborne pathogens through poultry processing.</p>
<p>3. Evaluate the potential for protozoa and other biological controls to be used as intervention or mitigation strategies for human pathogens in poultry processing and processing facilities.</p>
<p>4. Based on objectives 1-3, develop and evaluate physical and chemical intervention strategies to reduce contamination by foodborne pathogens of poultry products.</p>

More information

Approach: The focus of this research would be called the 'transmission phase' by epidemiologists or the 'migration phase' by ecologists. Processing of poultry products creates many severe barriers to transmission such that most of the pathogens are lost. However, it is clear that the barriers are incomplete and enough pathogens survive and pass to human consumers to cause foodborne disease. It is reasonable to assume that bacteria have adaptive strategies that improve the chances that some clones will survive processing making transmission to humans possible. The objectives of this project are designed to determine the relative ability of genetically different clones of foodborne pathogens to survive barriers that are encountered in the poultry processing plant. This will be followed by studying specific biological barriers that are common to ecosystems and are often responsible for limiting migration of bacteria. It is also likely that protozoa will be found in the processing environment that are not only ineffective in killing pathogens but may even be protective. Therefore, we plan to study the mechanisms of destruction or protection as they are uncovered. The knowledge that is gained from these studies will be used to design enhanced barriers in an attempt to improve the microbiological benefits of poultry processing.

Investigators
Meinersmann, Richard; Berrang, Mark
Institution
USDA - Agricultural Research Service
Start date
2011
End date
2016
Project number
6612-41420-004-00
Accession number
420977
Categories