An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Monolithic Reagentless Biosensor for Online Monitoring of Waterborne Pathogens

Objective

This Small Business Innovation Research Phase I project will develop a reagentless biosensor for online monitoring of microbial contaminants in drinking water. The biosensor is based on incorporating several newly emerging technologies into BioDetection Instruments' proprietary sensing platform. <P> A novel monolithic column will be developed that encapsulates a unique sensing material that can specifically and directly detect an indicator bacterium with no need for the addition of any reagents. The monolithic column will be characterized by a hierarchical pore structure, high surface area, small diffusion path length, and low hydraulic resistance, which are favorable for streamlining the detection efficacy. Online monitoring of microbial contamination will be realized simply by pumping or injecting the water sample through the monolithic biosensing column along with on-column optical detection. In Phase II, the research will be extended to develop a multichannel biosensor system for online monitoring of multiple waterborne pathogens. <P>The CDC reports that each year, 4 billion episodes of diarrhea result in an estimated 2 million deaths, and waterborne bacterial infections may account for as many as half of these episodes and deaths. The prevention of disease outbreaks relies on timely and efficient detection of disease-causing microorganisms. However, the detection of bacterial contaminants in drinking water still relies on cell growth-based methods, which are extremely time-consuming, typically requiring at least 24 hours and complicated multi-steps to confirm the analysis. Even current rapid methods such as ELISA and PCR still require enrichment of samples for 8-24 hours and take several hours to get only qualitative (positive/negative) results. Part of the challenge that faces both regulatory agencies and water plants, charged with protecting public health, is to find better, cost- effective, faster technologies for rapid detection of waterborne pathogens. <P> PUBLIC HEALTH RELEVANCE: The proposed product will provide a reagentless assay for online monitoring of microbial contaminants in drinking water. Drinking water treatment facilities, bottled water and beverage manufacturers, as well as private well owners will benefit from the development of the proposed system. Using the proposed product, they will be able to monitor their water sources for microbial contaminations and promptly take corrective measures.

More information

For additional information, including history, sub-projects, results and publications, if available, visit the <a href="http://projectreporter.nih.gov/project_info_details.cfm?aid=7481955&quot; target="blank">Project Information web page</a> at the National Institutes of Health Research Portfolio Online Reporting Tool (RePORTER) database.

Investigators
Su, Xiaoli
Institution
Biodetection Instruments, LLC
Start date
2008
End date
2009
Project number
1R43ES016699-01
Categories