An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

MULTI-HURDLE APPROACHES FOR CONTROLLING FOODBORNE PATHOGENS IN POULTRY

Objective

1. Implement strategies using plant derived, food-grade phytochemical nanoemulsions for reducing Salmonella and Campylobacter in poultry. [C1, PS2, PS5, PS7] 1A. Investigate the efficacy of in-water supplementation of phytochemical nanoemulsions in reducing S. Enteritidis and C. jejuni colonization in broiler chickens. 1B. Reduce Salmonella and Campylobacter on chicken carcasses using phytochemical nanoemulsions applied as a post-harvest intervention at critical control points in processing plants. 1C. Determine the quality, shelf-life and consumer acceptability of chicken meat subjected to the aforementioned interventions. 2. Investigate the potential mechanism(s) of action of phytochemical nanoemulsions against pathogen biofilms and determine efficacy for reducing Salmonella and Campylobacter biofilms in poultry processing plants. [C1, PS5] 2A. Determine the efficacy of phytochemical nanoemulsions as an antimicrobial wash for eradicating mature S. Enteritidis and C. jejuni biofilm formed on common food contact surfaces. 2B. Determine the efficacy of phytochemical nanoemulsions as an antimicrobial wash for inhibiting S. Enteritidis and C. jejuni biofilm formation on common food contact surfaces and their effect on exopolysaccharide (EPS) production, extracellular DNA (eDNA) production, and quorum sensing. 2C. Investigate the potential mechanism(s) of action of phytochemical nanoemulsions against pathogen biofilm by using transcriptomic and proteomic approaches. 3. Develop vaccine strategies that target multiple pathogens (i.e. Salmonella, Campylobacter, Clostridium, E. coli) utilizing novel Electron-beam technology in poultry. [C1, PS5, PS7] 3A. Test to confirm inactivation of foodborne pathogens in cocktail vaccine consisting of multi-serovars of Salmonella or multiple strains of C. jejuni in broiler chickens. 3B. Determine the efficacy of vaccine consisting of multi- serovars of Salmonella or multiple strains-C. jejuni in reducing colonization and shedding of foodborne pathogens in broiler chickens. 3C. Determine the efficacy of a multi-species cocktail vaccine in reducing colonization and shedding of foodborne pathogens Salmonella enterica, and C. jejuni in broiler chickens. 4. Identify key host neurochemical-microbiota-pathogen interactions across the biogeography of the avian gastrointestinal tract to enhance efficacy of phytochemical and vaccine-based strategies in reducing enteric pathogen colonization. [C1, PS2, PS5, PS7] 4A. Determine the ability of heat and cold stressors to influence avian susceptibility to enteric colonization of Salmonella and C. jejuni due to neurochemical production in different regions of the intestinal tract. 4B. Determine functional changes in the microbiome of each region of the avian intestinal tract in response to heat or cold stressors in Salmonella and C. jejuni challenged and unchallenged birds. 4C. Determine the ability of heat and cold stressors to influence efficacies of vaccine and phytochemical modalities on avian susceptibility to enteric foodborne pathogen colonization due to neurochemical production in different regions of the intestinal tract.

Investigators
Donoghue, Ann; Lyte J M; Jesudhasan P
Institution
USDA - Agricultural Research Service
Start date
2021
End date
2026
Project number
6022-32420-001-00D
Accession number
439695
Commodities