An official website of the United States government.

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

The Structure and Function of a Novel Bacterial Nitric Oxide Sensor, NosP

Objective

<p>With this award, the Chemistry of Life Processes Program in the Chemistry Division is funding Dr. Elizabeth Boon of the State University of New York Stony Brook for the investigation of a new protein in bacteria called NosP that may be involved in forming bacterial biofilms. A biofilm is generally a slimy, protective layer on a surface. Biofilms may form on living or non-living surfaces and can be found in natural, industrial, and hospital settings. Bacterial biofilms include dental plaques, some forms of pneumonia, and films that cover medical devices and harbor infectious diseases. These structures are sometimes resistant to antibiotics and harsh chemical treatments. Very little is known how biofilms form or how to destroy them. Dr. Boon is studying how biofilms are disrupted by nitric oxide. This research program provides broad training at the interface of chemistry with biology for undergraduate, graduate, and high school students. Dr. Boon has designed a course to help transition undergraduate students into research-based careers. She also collaborates with a local high school teacher so that underrepresented local students gain laboratory experience and the confidence to pursue careers in research.</p>

<p>Bacterial biofilms are a considerable threat to food and water safety because they cause persistent biofouling of food and food contact surfaces, and are resistant to antibiotics. Biofilm regulation by nitric oxide (NO) has been observed broadly in bacteria, thus interventions based on NO signaling could have an impact on food and water safety. Bacterial NO signaling is poorly understood. In this research project, the Boon group clones expresses, and purifies NosP and point mutants, then quantifies the specificity and affinity of diatomic ligands for NosP and its variants to determine if NosP binds NO at concentrations known to modulate biofilms (nanomolar). To gain insight into the heme environment and structure of NosP, Dr. Boon and her coworkers generate high-resolution crystal structures of NosP, as well as vibrational structures of the heme cofactor using electronic and resonance Raman spectroscopy. NosP is expected to be established as a novel NO sensor in P. aeruginosa. This research elucidates the molecular basis for NO signaling in P. aeruginosa and may open opportunities for controlling biofilms caused by this pathogen. Successful delineation of the role of NosP in P. aeruginosa may provide a basis for understanding NosP in other bacteria.</p>

Investigators
Boon, Elizabeth
Institution
Stony Brook State University
Start date
2016
End date
2019
Project number
1607532