Assessing the influence of environmental factors on the development and pathogenicity of *Aspergillus flavus*

Matthew Gilbert, PhD
Food and Feed Safety Unit
Agricultural Research Service
New Orleans, LA

Environmental Factors

Environmental Factors

FIGURE 3 | Effect of water activity and temperature on (A) growth and (B) aflatoxin B₁, production by a strain of *A. flavus* (Abdel-Hadi et al., 2012). Bars indicate least Significant Differences.

Medina et. al 2015

Previous Research

Medina et. al 2014

Aflatoxin and CO₂

Temperature (°C)	a _w	CO ₂ (ppm)	aflD	aflR	AFB ₁	
34	0.97	650	-	_	_	
		1000	_	_	_	
	0.95	650	-	_	-	
		1000	_	†(×3.6)	_	
	0.92 650 $ \uparrow\uparrow(\times 24.4)$		†(×2.6)			
		1000	-	†(×2.0)	†(×2.0)	
37	0.97	650	↑(×4.6)	_	††(×30.7)	
		1000	†(×6.5)	_	††(×23.8)	
	0.95	650	↑(×6.4)	††(×14.6)	†††(×79.2)	
		1000	†(×3.2)	††(×43.9)	†††(×78.5)	
	0.92	650	-	††(×40.4)	††(×15.1)	
	L	1000	1†(×22.5)	†††(×1680)	††(×23.8)	

variation lower than 2-fold. Numbers between brackets refer to the foldvariation with respect to the control.

RNA-Seq: Experimental Design

Appropriate glycerol/water solution:

Maize 0.99, 0.91 a_w

Incubation temperatures

Maize: 30 and 37°C

Aflatoxin Analysis of Maize Kernels

RNA Sequencing

• RNA Seq. Results:

Average of 9.9 million reads per sample obtained.

Average of 53% mapping to exons.

- Mapped to Aspergillus flavus strain 3357 genome using Tophat and
- Differential expression and interaction determined by DESeq2.

RNA seq Results

66 Different comparisons can be made:

30°C/37°C -----0.91a_w/0.99a_w------ 350 ppm/650ppm/1000ppm

Number of genes showing differential expression at p<0.05.

Individual comparisons

(based on gene ontology enrichment analyses)

Effect of Temperature

37°C vs 30°C @ 0.99 w_a and 350ppm **Effect of Water Activity**

0.91 vs 0.99 w_a @ 30°C and 350ppm Effect of CO₂

1000 ppm vs 350 ppm @ 30°C and 0.99 w_a

Genes downregulated:

- -glycolytic processes
- -Energy production(ie electron transport)

Genes downregulated:

- -translation
- -tubulin complex assy.
- -glycolytic processes
- -Energy production

Genes downregulated:

- -secondary metabolic processes
- -response to oxidative stress

Genes upregulated:

- -carbohydrate metabolism
- -lipid metabolism

Genes upregulated:

-Transcriptional related
(chromatin remodeling,
RNA polymerase)
-Cellular growth (DNA repair

and morphology)

Genes upregulated:

- -mitosis/DNA replication
- -Cellular growth

Individual comparisons

(based on gene ontology enrichment analyses)

37°C vs 30°C @ 0.99 w_a and 350ppm 0.91 vs 0.99 w_a @ 30°C and 350ppm 1000 ppm vs 350 ppm @ 30°C and 0.99 w_a

Genes downregulated:

- -glycolytic processes
- -Energy production(ie electron transport)

Genes downregulated:

- -translation
- -tubulin complex assy.
- -glycolytic processes
- -Energy production

Genes downregulated:

- -secondary metabolic processes
- -response to oxidative stress

Genes upregulated:

- -carbohydrate metabolism
- -lipid metabolism

Genes upregulated:

-Transcriptional related (chromatin remodeling, RNA polymerase) -Cellular growth (DNA repair

and morphology)

Genes upregulated:

- -mitosis/DNA replication
- -Cellular growth

The effect of CO₂: The effect of increasing CO₂ has at higher temperatures And decrease water availability.

1000ppm vs 350ppm

Effect of CO₂ on aflatoxin genes after 10 days

Secondary Metabolite Backbone Genes

				Effect of Temperature		Effect of Water activity		
Cluster ID	A. flavus 3357	Name	SM* Product	1000 ppm	350 ppm	1000 ppm	350 ppm	three-way interaction
5	AFLA_006170	polyketide synthetase (PksP)	naphthopyrone	- -	1.8	2.1	5.0	3.9
9	AFLA 010580	nonribosomal peptide synthase	siderophore	_	-	-	- -	-
10	AFLA_016140	·····	conidial pigment 1,8- dihydroxynaphthalene-melanin	_	_	-2.2	-3.5	_
14	AFLA 041050	enterobactin esterase IroE-like, putative	siderophore	-	-	-	-	<u>-</u>
15	AFLA_045490	dimethylallyl tryptophan synthase, putative	aflatrem, ATM2	-3.6	-	-4.5	-	-
20	AFLA_062860	polyketide synthase (PkfA)	3-(2.4-dihydroxy-6-methylbenzyl)- orsellinaldehyde	-	2.4	-1.8	-	4.5
21	AFLA_064240	nonribosomal peptide synthase (wykN)	WYK peptidase inhibitor	-2.5	1.2	-2.7	-	4.9
25	AFLA_070870	isopenicillin N synthetase (ipnA)	penicillin	-	-	-	-	-
27	AFLA_082150	polyketide synthase	asparasone	-	-	-2.9	-	-
31	AFLA_095000	Peptidase S41	ustiloxin B	-	-	-	-	-
32	AFLA_096390	aflatrem-geranylgeranyl pyrophosphate synthase (atmC)	e aflatrem,ATM1	-	-	-	-	-
35	AFLA_101700	NRPS enzyme (<i>lnaA</i>)	piperazines	-	2.7	-1.8	-	4.5
36	AFLA_104210	PKS-like enzyme, putative	dihydrocurvularin	-	-2.9	-	-2.9	-
39	AFLA_108550	polyketide synthase	monodictylphenone	-	-	-3.2	-	
41	AFLA_114820	polyketide synthase (fluP) (pksL2)	6-MSAi	-	-	-2.2	-	2.7
44	AFLA_116890	polyketide synthase (PkiA)	6-hydroxy-7-methyl-3- nonylisoquinoline-5,8-dione	-	-	-	-3.4	-
51	AFLA_127090	polyketide synthase (PkdA)	2-ethyl-4,6-dihydroxy-3-methyl-6-(2-oxopropyl) benzaldehyde et. al.	_	-	-	-	_
54	AFLA_139410	polyketide synthase (afIC / pksA / pksL1)	aflatoxin	-2.1	-	-	0.9	2.9
55	_ AFLA_139490	hybrid PKS/NRPS enzyme	cyclopiazonic acid	-4.4	-	-8.0	-4.0	8.1
NA**	AFLA_096040	FAD-dependent oxidoreductase (<i>kojA</i>)	kojic Acid	-	-	-	- Lo	og2 fold change

WGCNA Cluster Dendrogram: tool utilized to dissect the data and find biological meaning

- Genes based on co-expression similarity are clustered (shown in bands below)
- Branched tree diagram is based on the statistical relevance of their fit in the cluster. (then biological networks are created)

Transcription factor

Histone

Conidial hydrophobin

Conclusions from RNA-seq analysis

- CO₂ effects aflatoxin production
- CO₂ effects the molecular response to temperature stress and water availability
- Interaction effect of the three variables show altered regulation of core enzymes in secondary metabolic cluster genes.
- WGNCA analysis indicates genes related to oxidative stress response, mitosis and conidia production affected.

Food and Feed Safety Unit

• Goals:

- Establish acclimatized AF70 and 3357 strains
 - growth
 - spore production
 - toxin production
- Maize Fungus interactions.
 - KSA assays using acclimatized strains
 - Determine pathogenicity (GFP) and toxin production

Generating acclimatized strains

- 20 generations of subcloning conducted at
 - 30° C / $0.99A_{\omega}$ / 350 ppm CO_2
 - 37° C / $0.91A_{\omega}$ / 1000 ppm CO_{2}

Spore Production

 $30^{\circ}\text{C} / 0.99\text{A}_{\omega} / 350 \text{ ppm CO}_{2}$

 $37^{\circ}\text{C} / 0.91\text{A}_{\omega} / 1000 \text{ ppm CO}_{2}$

Aflatoxin Production

Acclimitized strains grown In liquid YGT media for 5 days.

Kernel Screening Assay

Corn Line **Fungal Strains** Water **Activity**

Environmental Conditions Growth **Toxin Production**

Gene Expression

Establish KSA assays – interaction between kernel and fungus under different environmental conditions.

1) Soak kernels 48 hours in appropriate glycerol:water

2) Inoculated in CO₂ incubators with AF70 strains:

- 1) GFP transformed
- 2) Acclimitized

GFP-fluorescence to measure fungal growth

Water Content

GFP Fluoresence

Aflatoxin Production

Acclimatized Lines – KSA Assay

Conclusions

 Development of Acclimatized strains indicate changes in spore production and aflatoxin production

• Changes in development (i.e.; spore production) and toxin profile are being explained and assessed in conjunction with RNA-Seq data.

 Development of a modified kernel screening assay is permitting the identification of key virulence genes affected by environmental factors.

Acknowledgements – Food and Feed Safety Unit

- Brian Mack, Bioinformaticist
- Darlene Downey, Microbiologist
- Matt Lebar, PhD, Chemist
- Carol Carter-Wientjes, Chemist
- Angel Medina-Vaya, PhD*
- Naresh Magan, PhD*
- Gary Payne, PhD**

- Deepak Bhatnagar
- Jonte Ellison
- Christine Sickler
- Rajah Rajasekaran, PhD
- Jeff Cary, PhD

^{*}Cranfield University, UK

^{**} North Caroline State University